
+.%.

i'_ ++ _ ++ _ ,. +++++

-_ ++ + __ Associotion for ,nlormotion .nd £/_ '__

+::':++,::i? 1100WayneAvenue'Sut_?+_: Management _ __+;++'+:+_ii
b Silver Spring, Maryland 20910 ,:+ ++_o ,

%% + ++

+ +,N + _ +'+,,,,_

e_+ .,_>+, TO AIIM STANDARDS _+.. '_+°+_,, "____ 4 MANUFACTURED _ _.xx.%,_'"_

O_ BY APPLIED IMAGE, INC. _x_ _4_'.__

Active Messages Versus Explicit Message Passing Under SUNMOS*

Rolf Riesen Arthur B. Maccabe Stephen R. Wheat

Sandia National Laboratories University of New Mexico Sandia National Laboratories
Albuquerque, NM 87185-1109 Albuquerque, NM 87131 Albuquerque, NM 87185-1109

rolf@cs.sandia.gov maccabe@cs.unm.edu srwheat@cs.sandia.gov

Abstract code gets at most 65 MB/s for large messages. User

level latencies are on the order of 45 micro seconds[4].
In the past few years much effort has been devoted Some researchers try to hide this latency and per-

to finding faster and more convenient ways to ex- form other computations while data is in transit. Oth-
change data between nodes of massively parallel dis- ers try to minimize system software overhead, and yet
tributed memory machines. One such approach, taken others try to accomplish both. Split-C and active mes-
by Thorsten yon Eicken et al.[6] is called Active Mes- sages have received much attention because of their
sages. The idea is to hide message passing latency attempt to tackle the problem as a whole and provide
and continue to compute while data is being sent and a novel form of message passing.

delivered. We have implemented active messages and ported
We have implemented Active Messages under SUN- Split-C to SUNMOS on the Intel Paragon. In this

MOS for the lntel Paragon and performed various ex- paper we compare the performance of explicit message
periments to determine their e.O_ciency and utility. In passing, active messages, and Puma portals.

this paper we concentrate on the subset of the Active In section 2 we give an overview of active messages
Message layer that is used by our implementation of and describe how we implemented them in SUNMOS.
the Split-C library. We compare performance to ex- Section 3 gives a brief introduction to the two types of
plicit message passing under SUNMOS and explore Puma portals [7] used for the measurements in this pa-

new ways to support Split-C without Active Messages. per. In Section 4 we look at Split-C, our implementa-
We also compare our implementation to the original tion and its relationship to active messages and Puma
one on the Thinking Machines CM-5 and try to de- portals. We are now ready to run test codes and mea-
termine what the effects of low latency and low band- sure the performance of the various paradigms. The
width versus high latency and high bandwidth are on results are presented in section 5. The paper concludes

user codes, with a comparison of Split-C and active messages im-
plementations on the Thinking Machines CM-5 and
the Intel Paragon.

1 Introduction

Over the past few years, network bandwidth has
2 Active Messagesincreased dramatically, while latency, the time it takes

to access the network, has decreased. This is true for
distributed environments using ATM and FDDI, as Active messages have been proposed in [6] and are
well as massively parallel systems such as the Intel the lowest message passing level available on the CM-

Paragon with a peak bandwidth of 200 MB/s in fast 5[5]. Other communication paradigms on the CM-5
streaming mode. are implemented using active messages.

Unfortunately, software has not kept up with this An active message consists of a function address

trend. This is evident in OSF/1 AD for the Intel and four I 32 bit parameters (20 bytes). Since all the
Paragon. While the hardware is capable of achiev- nodes in a SPMD application share the same memory
ing 175 MB/s in slow streaming mode, a user level map, it is possible for a node to determine the start

*This work was supported by the United States Department 1The latest implementation allows up to 17 parameters (72

of Energy under Contract DE-AC04-94AL85000. bytes)[5], l_ AS_m_

. 0
L

address of a function on another node by looking at 3 Puma Portals
the same function on tile local node.

l'uma, the successor to SUN MOS, currently under

When an active message arrives, program execution development at Sandia National l,aboratories, offers
continues at the address specified in the active mes- portals as the basic message p_sing mechanism. Per-

sage header. This function, called an active message tals were designed to bc very efficient and simple, yet
handler, is invoked with the parameters supplied by powerful enough to support any of the currently avail-

the sender. When the active message handler finishes, able and proposed message passing paradigms[7], [2].
program control returns to the point just prior to the In this paper we concentrate on two of l,he four portal
active message arrival, types provided by Puma.

A readmem portal allows a process on a node to

There are two reasons why this method is fast on specify a region of its memory space to be readable by
the CM-5 and can be used as the basic message passing other processes in its group. Once a memory region
mechanism. First, in order to send an active message has been declared to be readable, processes on other
no access or alignment checks are needed, since the nodes can issue a request that are handled by the ker-
active message send flmction is called with value pa- ne! on the node with the readmem portal. Therefore,
rameters only. The user cannot send data that is not once a readmem portal has been setup, no context

in her address space. The 'function address does not switch to the user level is required to read data from
need to be verified either. If control is transferred to the readmem portal region.
a non-existing function or outside the user's address A writemem portal is used by a process to make

space, the memory management unit of the receiving parts of its memory writablc by other processes in its
node will fault the user process, group. When a kernel receives data to be put into a

writemem portal, it certifies tile validity of the request
The second reason for the efficiency of active rues- and the DMAs the data directly into the desired mere-

sages on the CM-5 is the fact that the comnmnication ory region. Again, no context switch to the user level
hardware is accessible from user level. Inserting and is required for the operation to complete.
extracting messages into and from the communication Puma is not yet available on the Intel Paragon. For
network can be done without trapping into the ker- this paper we have changed the SUNMOS kernel to do
nel. This also means, that the active message layer on the necessary processing for readmem and writenmm
the CM-5 has to poll the network for new messages, portals. The numbers reported are therefore very close
While this makes receipt and dispatch of active rues- to the tmmbers we expect tbr the Punm kernel later
sages quick, it can cause delays, if the receiving node this year.
is very busy.

The lntel Paragon does not provide direct user ac- 4 Split-C
cess to the communication hardware. The SI,INM()S

implenmntation of active messages therefore requires Split-C is built on top of active messages. It is a
a trap into the kernel to send, and an interrupt on tile superset of the C programnling language and otti_rs a

receiving end to receive an active message. Because two dimensional view of a global shared memory. In
of this, active message startup and dispatch times contrast to high performance Fortran and other sire-
are much higher under SUNMOS than they are ou liar approaches, it, olrers the progrmnmer a ch:ar cost
the CM-5. llowever, incoming requests are handled model for memory access. 'I'he progratlllner decides
as they arrive without the need for application level the data distributioz_ and is always aware when a data

polling. Thus, incoming requests are not delayed while access involves a remote node. Sl)lil,-(_ distinguishes
the application is involved in a lengthy cotnl)utation, between local and global pointers, l,_cal l_ointers can

only polar to tnenmry locations on the Icwal tlode. A
'lk_compare the relative me.rits of i.he approaches _,,_' global pointer consists of/tn address an_! a _otte tmn_--

coded a simple matrix multiply routine. Under SIIN- her to specify a coordinate in tim two dilllensional

MOS using Split-(J and active messages this code raa zlwilmry space[l].
much faster than the smm: code umh_r an ()SF illlple- Split-C, gets its nanw t'rotll the l,ossibility tc_ split
mental, ion of Split-C that uses polling. 'l'he SIINMOS tim data access request ami actual d_qiv_ry imo two
imlflemeatation also outperformed tlw original CM-5 parts; the so called "sl_lit.-i_ha.se" read _qwral.iol,. 111
iml,hmmntatiol_ by a factor of seven [3] [11. Iwtweet_ the programnwr can use t.h_, ti_u, to continu,'

!

double *global gPtr; 5 Data Transfers

double local, x ; In this section we measure the time it takes to write

/* Split phase assignment */ and read data from a remote node using explicit mes-
sage passing, active messages, and portals. In Split.-

local: = *gPtr ; C, an assignment of a single double precision floating
point number to a global location causes the transfer

/* of eight bytes from one node to another. Of course,
** other processing.., state of it is possible to group several small requests together
** "local" unknown, and transfer all the data ill a single operation. While
*/ it makes sense to do that, even for explicit message

passing codes, the difference in transmit time between
sync(); the three methods under investigation is diminishing

/, for large messages.Table 1 illustrates this. The first column shows the

** The global value pointed to by size of remote read requests in kilo bytes. The sec-
** "gPtr" is now available in the

end,third,and fourthcolumn show thetimeinmicro

** variable "local". seconds it takes to complete the request using active
*/ messages, explicit message passing, and readmem por-

tals respectively. While there is a measurable differ-
x = local * 3.0; ence between the three methods, its effect becomes

less and less important. This is shown in the last two

Figure 1: Split-C Code Fragment colmnns of the table. We assume the readmem por-
tal time for a given size to be 100%. The second to
last column then shows how much more, in percent, it

computation. The example in Figure 1 should clear takes to complete the transfer using active messages.
this up: The last column shows the difference in percent be-

tween readmem portals and explicit message passing.
The assignment to the variable local will cause a For this reason we only consider data transfers of less

data transfer from another node 2. Once the request than 256 bytes for the reminder of this paper.
has been issued, computation can continue. Before the
value of local is used, a call to sync() is on order. 5.1 Remote Read Using Active Messages
The call will block until the data has arrived, or return

immediately, if it is already there. Note that sync() The algorithm used to read memory on a remote

is not a global operation. Only the node issuing the node, using active messages, is a follows:
sync () is blocked.

The Split-C tea.m at Berkeley has modified the gcc 1. The local node sends an active message to the
compiler and ported it to various architectures. We remote node. The message contains the address
have retargeted the compiler to run on Sun work- of a simple active message handler, the amount of
stations and produce code for the Paragon. We also requested data, and the start address of the data.
rewrote the Split-C library to take advantage of spe-
cific SUNMOS features. Doing this sh, _'ed that Split- 2. The message handler invoked on the remote node
C can be implemented without active messages. While simply uses the length and address information
active messages are more general than readmem and to send a message containing the requested data
writemem portals, the latter is all that Split-C needs, back to the local node.

We have plans to port Split-C to Puma once it be- 3. The local node has preposted a receive and the
comes available. In the meantime, the Split-C library data will be deposited in the local user melnory.
uses active messages under SUNMOS as well as ex-

plicit message ,-assing for larger data transfers. Figure 2 shows the result for all three llmthods for
message sizes from 4 to 256 bytes. [':ach data point
is the result of 100 trials. The plot shows the mini-

2This assumes gptr points to another node. Local access
through global pointers is possible, but less elticient than access Inunl, average, and nlaxinlum observed for ('a.ch size
though a local pointer, nle_usured.

I

Size in k Bytes AM msg portal AM vs. portal msg vs. portal

1 160,0/_s 146.1/_s l18.0/_s 35.6% 23.8%
5 181.3ps 166.8#s 139.0#s 30.4% 20.0%

10 216.5ps 204.0#s 174.8ps 23.9% 16.7%
50 471.2/Ls 457.1/_s 428.7#s 9.9% 6.6%

100 809.9ps 793.1/_s 765.8#s 5.8% 3.6%
500 3366.9#s 3345.6#s 3319.7ps 1.4% 0,8%

1000 6549.9/_s 6521.5#s 6499.6ps 0.8% 0.3%

Table 1: Large Data Transfers (Read)

Remote Memory Read
i i i i i

22O

20O

t80

120 -

100 -

active messa_les ----
msg passm,=l

ceadmem portal

80

60 1 l 1 I 1
0 50 100 150 200 250

Number of Bytes

Figure 2" Remote Read Access

5.2 Remote Read Using Portals implementation of active messages makes the problem
even worse, since two context switches are required.

The steps involved to read remote memory using a One to activate the message handler thread, and a
readmem portal are as follows: second one to return to the regular user thread.

1. The local node preposts a receive for tile re- 5.4 Remote Write Using Active Messages
quested data and then sends a request to the re-

mote readmem portal. The request contains the In order to measure writemem performance using
address and amount of data to be read. active messages, we proceed as follows:

2. The kernel on the remote node bandies the re- 1. The local node sends an active message contain-
quest and sends the desired data. ing the amount of data to be shipped, as well as

the address on the remote node where it should

3. The data arrives at the local node and the re- be deposited.
ceiver is informed through a flag that the data
has arrived. 2. Immediately after that the local node sends a

message containing the write data.

5.3 Remote Read Using Explicit Message 3. The active message handler on the remote node
Passing issues a receive into the location specified by the

parameters sent in the active message.
For comparison reasons we include the measure-

ments for a explicit message passing remote read. It At this time the operation is complete. To get ac-
works as follows: curate timings, we have the remote node send the data

back in the same fashion. We measure the total time

1. The remote node posts a receive for readmem re- and then divide by two. Figure 3 shows the results.
quests.

5.5 Remote Write Using Portals
2. The local node sends a request containing the ad-

dress and amount of data requested. To send data to a writemem portal the local node

3. The remote node receives the request, handles it, simply sends the data to the portal on the remote
and sends the desired data to the local node. node. The kernel will receive the request and DMA

the data into the user memory. In order to measure

4. The local node has preposted a receive for the the time it took, the test code on the remote node polls
data. It will be deposited in the local user mem- the memory location to detect when the data arrives.
ory. It then turns around and sends the data back, so the

local node can measure the total time and divide by
Note that the semantics of this algorithm are two.

slightly different than that of the previous two. The

user code on the remote end has to anticipate the time 5.6 Remote Write Using Explicit Mes-
when the readmem request arrives and prepare accord- sage Passing
ingly. If the code is not ready for the request, or it is

busy doing other things, the data transfer will be de- Again, we include this test for comparison reasons
layed. Portals and active messages do not have this only. Since the remote node has to be ready and poll
problem. As soon as a request arrives, it will be han- for incoming writemem requests, we do not feel that
died, no matter where local program control resides explicit message passing can be substituted for portals
at that instant. We have included explicit message or active messages.
passing here only to compare transmission times. We Our test code posts a receive for the writcmem re-
do not imply that Split-C could be implemented eft]- quest on the remote node. The local node sends a
ciently using explicit messages passing only. first message containing the address and the anmunt

Figure 2 clearly illustrates that using portals under of data. A second message sent immediately after-
SUNMOS is superior to active messages and explicit wards contains the data. Once the remote node re-

message passing. In both cases that has to do with ceives the first message, it can issue a receive request
the time that is saved by handling the request in the for the desired amount into the approl)riate memory
kernel versus a context switch into user space. Our location.

....................... _-........ 4-................... _.....
•_ 140

......_......,_......6.....a.....,_......_......_......_......_;......_......_......_.......
6O
0

5O
*00

Number of Byte6 !_ 20O
250

Figure 3: Remote Write Access
6 Summary

Acknowledgments

We have seen that Split-C can be implemented us- We wish to thank T. Mack Stallcup and Michael
ing portals or active nmssages as the lOWest message C. Proicou of Intel's Super COmputing Division for

passing mechanism. A COmparison of remote data ac- their ass/stance with hardware issues on OUr Paragon
cess using portals, active messages, and explicil; rues- machines. Thanks also go the the remaining SUN-

sage passing shows that portals have SUperior perfor- MOS/Puma team for input and ass/stance to this pa-
mance compared t.o tile other two mechanisms. One per.
reason that active messages perform so poorly in our
implementation is the fact, that they require an add/-

tional context switch from the active message handier References
back to the regular user thread. Other architectures,

such as the CM-5, can make active messages more [l] David

efficient by providing user level access to the commu_ Culler, Andrea Dusseau, Seth (:,open Goldstein,

nication hardware.

Arvind Krishnamurthy, Steven Lumetta, Thorsten

In [5] a time of approximately lops is reported to yon Eicken, and Katherine Yelick. Parallel pro-
write four Wordsa into a remote node on a CM-5 run- gramming in Split-C. In Proceedings of Supercom.
ning at 40 MHz. This has to be compared to 70ps puling '93, pages 262-273, November 1993.
using portals under SUNMos on the Intel Paragon.

HOWever, it should be noted that the active message [2] Arthur B. Maccabe and Stephen R. Wheat. Mes-

layer on the CM-5 has to poll for the data. This means sage Passing in PUMA. Technical report SAND93_
that a node busy doing COmputations might not ban- Sandia National Laboratories, 1993.

die requests as quickly 0935,

gest. as the benchmarks might sug- [3] Rolf Riesen, Arthur B. Maccabe, and Stephen R.
Wheat. Split-C and active messages Under SUN-

Words and a function address __ 20 bytes. MOS on the Intel Paragon. Subtnitted to Super-computing '94, 1994.

L . p L

[4] Bernard Traversat, Bill Nitzberg, and Sam
Fineberg. Experience with SUNMOS on the
Paragon XP/S-15. In Proceedings of the lntel
Supercomputer User's Group. 1994 Annual North
America Users' Conference., June 1994.

[5] Lewis W. Tucker and Alan Mainwaring. CMMD:
Active messages on the CM-5. Parallel Computing,
20(4):481-496, April 1994.

[6] Thorsten yon Eicken, David E. Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-

sages: A mechanism for integrated communication
and computation. In Proceedings of the 19th In-
ternational Symposium on Computer Architecture,
Gold Coast, Australia, May 1992. ACM Press.

[7] Stephen R. Wheat, Arthur B. Maccabe, Rolf
Riesen, David W. van Dresser, and T. Mack Stall-
cup. PUMA: An operating system for massively
parallel systems. In Proceedings of the Twenty-
Seventh Annual Hawaii International Conference
on System Sciences, pages 56-65. IEEE Computer
Society Press, 1994.

I I

